media archive
Mathematics Conferences Introduction to Gross-Siebert Program
Loading the player ...
Scattering, tropical geometry, and mirror symmetry for P2
SPEAKER  |  Peter Overholser
INSTITUTE  |  KU Leuven, BE
DATE  |  May 9(Sat), 2015
TIME  |  09:30
PLACE  |  1114 International Conference Room, KIAS
Keyword  |  
Download  |  
ABSTRACT  |  Scattering, tropical geometry, and mirror symmetry for P2 (Overholser) Gross used tropical geometry to reinterpret Barannikov's mirror symmetry for P2, discovering that the mirror map becomes very straightforward in this language. A Landau-Ginzburg potential can be defined using tropical analogues of holomorphic disks; period integrals glue these disks into tropical curves whose related invariants govern the quantum cohomology of P2. This construction features wall-crossing, scattering diagrams, and broken lines.
  • Conifold transitions...
    Helge Ruddat
    May 10(Sun), 2015
  • Relative BPS state c...
    Michel van Garrel
    May 10(Sun), 2015
  • Directions from trop...
    Peter Overholser
    May 10(Sun), 2015
  • Periods, tropical cy...
    Helge Ruddat
    May 9(Sat), 2015
  • Scattering, tropical...
    Peter Overholser
    May 9(Sat), 2015
  • The tropical vertex
    Michel van Garrel
    May 9(Sat), 2015
  • Curve counting and a...
    Michel van Garrel
    May 8(Fri), 2015
  • Tropical geometry an...
    Peter Overholser
    May 8(Fri), 2015
  • Scattering and recon...
    Helge Ruddat
    May 8(Fri), 2015
  • Introduction to the ...
    Helge Ruddat
    May 7(Thu), 2015
  • Toric degenerations,...
    Peter Overholser
    May 7(Thu), 2015
  • Log geometry and cou...
    Michel van Garrel
    May 7(Thu), 2015