media archive
Mathematics Conferences
Loading the player ...
Structure of the grope filtration of the knot concordance group
SPEAKER  |  Taehee Kim
INSTITUTE  |  
DATE  |  May 10(Wed), 2017
TIME  |  11:20
PLACE  |  8101
Keyword  |  
Download  |  
ABSTRACT  |  A grope in the 4-ball bounded by a knot in the 3-sphere is a certain 2-complex which can be considered as an approximation of a slice disk. Cochran, Orr, and Teichner defined a filtration of the knot concordance group using gropes. In this talk, I will give a new infinite rank subgroup for each of the successive quotients of the filtration. A key ingredient is L2-signature defects associated to amenable groups.
  • On dissolving knot s...
    Ki-Heon Yun
    July 11(Tue), 2017
  • Bar Natan's deformat...
    Francesco Lin
    May 11(Thu), 2017
  • On the Bott-Cattaneo...
    Tatsuro Shimizu
    May 11(Thu), 2017
  • Structure of the gro...
    Taehee Kim
    May 10(Wed), 2017
  • 3-manifold invariant...
    Zhongtao Wu
    May 10(Wed), 2017
  • Rational homology co...
    Paolo Aceto
    May 10(Wed), 2017
  • Representation varie...
    Takahiro Kitayama
    May 10(Wed), 2017
  • A polynomial invaria...
    Teruaki Kitano
    May 10(Wed), 2017
  • Topological 4-manifo...
    Mark Powell
    May 9(Tue), 2017
  • An introduction to m...
    Francesco Lin
    May 9(Tue), 2017
  • Topological 4-manifo...
    Mark Powell
    May 9(Tue), 2017
  • An introduction to m...
    Francesco Lin
    May 9(Tue), 2017
  • An introduction to m...
    Francesco Lin
    May 8(Mon), 2017
  • Topological 4-manifo...
    Mark Powell
    May 8(Mon), 2017
  • An introduction to m...
    Francesco Lin
    May 8(Mon), 2017
  • Topological 4-manifo...
    Mark Powell
    May 8(Mon), 2017