media archive
Mathematics Conferences
Loading the player ...
Bar Natan's deformation of Khovanov homology and involutive monopole Floer homology
SPEAKER  |  Francesco Lin
INSTITUTE  |  
DATE  |  May 11(Thu), 2017
TIME  |  17:10
PLACE  |  8101
Keyword  |  
Download  |  
ABSTRACT  |  We study the conjugation involution in Seiberg-Witten theory in the context of the Ozsvath-Szabo and Bloom's spectral sequence for the branched double cover of a link L in S^3. We show that there exists a spectral sequence of F[Q]/Q^2-modules (where Q has degree ?1) which converges to an involutive version of the monopole Floer homology of the branched double cover, and whose E^2-page is a version of Bar Natan's deformation of Khovanov homology in characteristic two of the mirror of L. We conjecture that an analogous result holds in the setting of Pin(2)-monopole Floer homology.
  • On dissolving knot s...
    Ki-Heon Yun
    July 11(Tue), 2017
  • Bar Natan's deformat...
    Francesco Lin
    May 11(Thu), 2017
  • On the Bott-Cattaneo...
    Tatsuro Shimizu
    May 11(Thu), 2017
  • A polynomial invaria...
    Teruaki Kitano
    May 10(Wed), 2017
  • 3-manifold invariant...
    Zhongtao Wu
    May 10(Wed), 2017
  • Structure of the gro...
    Taehee Kim
    May 10(Wed), 2017
  • Rational homology co...
    Paolo Aceto
    May 10(Wed), 2017
  • Representation varie...
    Takahiro Kitayama
    May 10(Wed), 2017
  • An introduction to m...
    Francesco Lin
    May 9(Tue), 2017
  • Topological 4-manifo...
    Mark Powell
    May 9(Tue), 2017
  • Topological 4-manifo...
    Mark Powell
    May 9(Tue), 2017
  • An introduction to m...
    Francesco Lin
    May 9(Tue), 2017
  • Topological 4-manifo...
    Mark Powell
    May 8(Mon), 2017
  • An introduction to m...
    Francesco Lin
    May 8(Mon), 2017
  • Topological 4-manifo...
    Mark Powell
    May 8(Mon), 2017
  • An introduction to m...
    Francesco Lin
    May 8(Mon), 2017